CHAR & CHAR ARRAY

C uses char type to store characters and letters. However, the char type is integer
type because underneath C stores integer numbers instead of characters.

In order to represent characters, the computer has to map each integer with a
corresponding character using a numerical code. The most common numerical code is
ASCII, which stands for American Standard Code for Information Interchange. The
following table illustrates the ASCII code: http://www.asciitable.com/

In C, the char type has a 1-byte unit of memory so it is more than enough to hold
the ASCII codes. Besides ASCII code, there are various numerical codes available such
as extended ASCII codes. Unfortunately, many character sets have more than 127 even
255 values. Therefore, to fulfill those needs, the Unicode was created to represent
various available character sets. Unicode currently has over 40,000 characters.

#include <stdio.h>
char ch;

int main (void)
{
ch = 'A'"; // ch = 65;
printf ("$c\n", ch); // %c for chars
printf ("$d\n", ch); // %d for int, prints ASCII code of a character
return 0;

}

How to convert to upper-case and lower-case.
Convert char to upper-case: toupper(ch);
Convert char to lower-case: tolower(ch);
Both functions are declared in <ctype.h>

#include <stdio.h>
#include <ctype.h>

char ch;

int main (void)
{
ch = 'a';
printf ("$c\n",ch); // %c format is used for chars

ch = toupper (ch); // to upper-case
printf ("%c\n",ch);

ch = tolower(ch); // to lower-case
printf ("$c\n",ch);
return 0;

}

Print the characters from ‘a’ to ‘z’:

http://www.asciitable.com/

#include <stdio.h>
char ch;

int main (void)
{
for(ch = 'a'; ch <= 'z'; ch++)
printf ("%c",ch);
printf ("\n");
return O;

}

E-OLYMP 8610. Previous and next letter Given letter of English alphabet. Print
its previous and next letter.

Sample input Sample output
D CE

» Let char ch is current letter. Print as a letter the value of (ch — 1) and (ch +
1). Use %c format for printitng character, not integer.

Char array

String is a sequence of characters that is treated as a single data item and
terminated by null character \O' Remember that C language does not support strings as
a data type. A string is actually one-dimensional array of characters in C language.
These are often used to create meaningful and readable programs.

For example: The string “hello” contains 6 characters including "\O' character
which is automatically added by the compiler at the end of the string.

Declaring and Initializing a string variables
There are different ways to initialize a character array variable.

#include <stdio.h>

char sl1[6]
char s2[06]

"Hello";
{ lHl,lel,lll,lll,lol,l\Ol };

int main (void)

{
printf ("%$s\n", sl1)
printf ("%$s\n", s2)

for(int i = 0; i < 6; i++)
printf ("%c", sl[i]);
printf ("\n");

return O;

https://www.e-olymp.com/en/problems/8569

index i 0 1 2 3 4 5

value s[i] H | e I I 0 0

- >
size of array = 6

Input function scanf() can be used with %s format specifier to read a string input
from the terminal. But there is one problem with scanf() function, it terminates its input
on the first white space it encounters. Therefore if you try to read an input string “Hello
World” using scanf() function, it will only read Hello and terminate after encountering
white spaces.

Another method to read character string with white spaces from terminal is by
using the gets() function. Warning: use gets_s() for Visual Studio 2015 and more.

#include <stdio.h>
char s[100];

int main (void)

{
scanf ("%s", s); // read one word only
//gets(s); // read the whole line
printf ("$s\n", s);
return 0;

}

Consider the char array os size 10:
char s[107];

Read the line till the end: gets(s);
Print the string: puts(s);

index i 0 1 2 3 4 5 6 7 8 9

value sJi] H | e I I 0 d a | d 0

- >
size of array = 10

#include <stdio.h>
char s[100];

int main (void)

{
gets(s); // Hello dad
puts(s);
return O;

}

C++ style (read one word only):

#include <iostream>
#include <string>

using namespace std;
string s;

int main (void)
{

cin >> s; // read one word only
cout << s;

return O;

}

C++ style (read line with spaces):

#include <iostream>
#include <string>
using namespace std;

string s;

int main (void)
{

getline(cin,s); // read line with spaces
cout << s;

return 0;

}

C C++
#include <stdio.h> | #include <iostream>
char s[100]; string s; This is adog
read one word scanf(“%s”,s); cin >>s; This
read all line gets(s); getline(cin,s); This is adog
print a string prir;)tL(;:/(oss)’;,s); cout <<s;

If you want to print string with stdio.h functions, you need to extract the char
array out of the string object using c_str() method.

#include <iostream>
#include <cstdio>
#include <string>
using namespace std;

string s;

int main (void)

{

getline(cin, s); // read line with spaces
puts(s.c_str());

printf ("%s\n",s.c_str());

return 0;

}

E-OLYMP 8569. String length Given a string. Print it and its length,

Sample input Sample output
Programming Principles 1 Programming Principles 1
24

» To find the length of the string you can use the function strlen(s) that is
declared in the library <string.h>

#include <stdio.h>
#include <string.h>

char s[110];

int main (void)
{
gets(s);
puts(s);
printf ("$d\n", strlen(s));
return 0;

}

C++ style (line with spaces):

#include <iostream>
#include <string>
using namespace std;

string s;

int main (void)

{
getline(cin, s);
cout << s << endl;

cout << s.length() << endl;
return 0;

}

E-OLYMP 8571. Count the letters Given a string s and a lowercase letter c. How

many times the letter ¢ appears in the string s? Uppercase and lowercase letter
considered the same. For example, 'a' and 'A’ considered the same letters.

Sample input Sample output
Programming Principles 1 3
p

» Sample input string contains 3 letter p: two uppercase ‘P’ and one lowercase

‘p’. Letter c is lowercase, so let’s convert each letter of the string s to lowercase and
then compare it with letter c.

#include <stdio.h>
#include <ctype.h>
#include <string.h>

https://www.e-olymp.com/en/problems/8569
https://www.e-olymp.com/en/problems/8571

char ch, s[100];
int i, cnt;

int main (void)
{
gets(s);
scanf ("%c", &ch);

cnt = 0;
for (i = 0; 1 < strlen(s); i++)
if (tolower(s[i]) == ch) cnt++;

printf ("%d\n", cnt);
return O;

C++ style:

#include <iostream>
#include <cctype>
#include <string>
using namespace std;

char ch;
string s;
int i, cnt;

int main (void)

{
getline (cin, s);
cin >> ch;

cnt = 05
for (i = 0; 1 < s.length(); i++)
if (tolower(s[i]) == ch) cnt++;

cout << cnt;

E-OLYMP 8319. Simple calculator Input string contains an expression with one
math operator (+, -, *, /). Find the value of expression.

Sample input Sample output
3 * 12 36

» Read integer, char, integer. Depending on type of operation (char can be one of
+, -, *, /) calculate the answer.

#include <stdio.h>

int a, b, res;
char c¢;

int main (void)

{

https://www.e-olymp.com/en/problems/8319

if

(c == "+') res = a

if (¢ == '-'") res = a
if (¢ == '"*') res = a
if (¢ == "'"/'") res = a
printf ("%d\n", res);
return O;

}

C++ style:

#include <iostream>

#include <string>

using namespace std;

int a, b, res;

char c;

int main (void)

{
cin >> a >> c >> b;
if (¢ == '"+') res = a
if (¢ == '=-'") res = a
if (¢ == '*') res = a
if (¢ == "/") res = a

cout << res << endl;
return O;

}

Switch implementation:
#include <stdio.h>

int a, b, res;
char c;

int main (void)
{

scanf ("%d %c %d", &a,

switch (c¢)

{

case '+':
res = a + b;
break;

case '-':
res = a - b;
break;

case '*':
res = a * b;
break;

case '/':
res = a / b;

&c,

O o0 o0

~e

&c,

oo oOo

~e

Ne N

~e

Ne Ne

~e

&b) ;

&b) ;

printf ("$d\n", res);
return 0;

}

E-OLYMP 909. Number of words Find the number of words in the given text.

Sample input Sample output
Hello world! The country! 4

» Read word after word till the end of file and count the number of words.
#include <stdio.h>

char s[100];
int cnt;

int main (void)
{
cnt = 0;
while (scanf ("%$s",s) == 1)
cnt++;

printf ("$d\n", cnt) ;
return 0;

}

C++ style:

#include <iostream>
#include <string>
using namespace std;

string s;
int cnt;

int main (void)

{
cnt = 0;
while (cin >> s) cnt++;
cout << cnt << endl;
return 0;

}

E-OLYMP 8985. Delete the letter Delete all small Latin letters a from the given
string.

Sample input Sample output
abrakadabra brkdbr

» Declare two pointers to the beginning of the array: i = j = 0. Move the pointer i
through the letters of the string. For each letter of string s that is not equal to ‘a’, copy
s[i] to s[j] and move j one position forward.

https://www.e-olymp.com/en/problems/909
https://www.e-olymp.com/en/problems/8985

=
j=0 i=0
i=2 i=3
Y Y
b b a C a d b b a C a d
¥ A
j=1 ji=1
i=4 i=5
v v
b c a C a d b C a c a d
1 A
=2 j=2
i=6 i=6
\ \
b c d C a d b C d | \0| a d
1 1
=3 i=3

Algorithm realization
Declare char array.

char s[10017;
Read the input string.
fgets (s, sizeof(s), stdin);

Letters other than ‘a’ move to the left.

int 3 = 0;
for (int i = 0; 1 < strlen(s); i++)
if (s[i] '= 'a') s[j++] = s[i];

At the end of the resulting string put 0 byte.

Print the answer.

puts (s);

C++ style:
Declare a new string res. If s[i] # ‘a’, then append s[i] to res. Plus operation (+) for
strings is a concatenation.

#include <iostream>
#include <string>
using namespace std;

string s, res;
int 1i;

int main (void)

{

getline(cin, s);
for (1 = 0; i < s.length(); i++)
if (s[1i] != 'a') res = res + s[i]; // concatenation

cout << res;
return 0;

E-OLYMP 1427. Calculator Find the value of expression with numbers and + / -
operations.

Sample input Sample output
1422-3+4-5+123 142

» Read the first number into variable res. Read both operation and number till the
end of file. Do the operation.

#include <stdio.h>

int res, x;
char ch;

int main (void)
{
scanf ("%d", &res);
while (scanf ("%c%d", &ch, &x) == 2)
if (ch == "+') res += x; else res -= x;
printf ("$d\n", res);
return 0;

}

C++ style:

#include <iostream>
using namespace std;

int res, a;
char ch;

int main (void)
{
cin >> res;
while (cin >> ch >> a)
if (¢ch == '"+'") res += a; else res -= a;
cout << res << endl;
return 0;

https://www.e-olymp.com/en/problems/1427

}

String substring

char *strcpy(char *dest, const char *src)

Copies the string pointed by src to dest.

#include <stdio.h>
#include <string.h>

char s[100] = "This 1is a tree";
char res[101];

int main (void)

{
strcpy (res, s);
puts (res) ;
return 0;

}

char * strncpy (char * destination, char * source, size t num);

Copies the first num characters of source to destination. If the end of the source C
string (which is signaled by a null-character) is found before num characters have been
copied, destination is padded with zeros until a total of num characters have been

written to it.

#include <stdio.h>
#include <string.h>

char s[100] = "This 1is a tree";
char res[101];

int main (void)

{
strncpy(res, s + 5, 2); // is
puts (res) ;
strncpy (res, &s[10], 4); // tree
puts (res) ;
return 0;

}

String has a method substr to find the substring of a given string.

e substr(int pos, int len) - returns the substring of length len

starting at position pos.

e substr (int pos) — returns the substring starting at position pos till the
end.

E-OLYMP 8222. The length of a substring Given a string s and two positions a

and b.

Print the length of a substring s[a..b] and substring itself. The numbering of

characters in the string starts from 1.
» Declare the resulting string res. Copy the substring SJi..J] into it using the
strncpy function.

https://www.e-olymp.com/en/problems/8222

Declare the input string s and resulting string res.

char s[101], res[101];

Read the input data.

fgets (s, sizeof(s), stdin);
scanf ("%d %d", &i, &j);

Copy sJi ... j] to res. Indexing in char array starts from 0. The indices in the
problem statement are specified starting from 1. Therefore, in reality s[i— 1 ... j— 1] is
copied to res. In total j — i + 1 letters are copied.

strncpy(res, s + 1 -1, 3 - 1i + 1);

Print the answer.

printf ("%d\n", j - i + 1);
puts (res) ;

C++ style:
To make the numbering of characters in the string from 0, subtract 1 from a and b.
Use substr method.

#include <iostream>
#include <string>
using namespace std;

int i, 3j;
string s, res;

int main (void)
{
cin >> s;
cin >> i >> j;
i-=; ==
res = s.substr(i, j - 1 + 1);
cout << res.length() << endl;
cout << res << endl;
return 0;

}

E-OLYMP 9626. startsWith endsWith Three lines of characters is given. Check
if the second line is a prefix of the first line. Check if the third line is a suffix of the first
line.

» Function
char *strstr(const char *haystack, const char *needle)

finds the first occurrence of the substring needle in the string haystack.

https://www.e-olymp.com/en/problems/9626

b a | b c d c g h

prefix suffix

String b is a prefix of a if b appears in a starting at position 0.
String c is a suffix of a if ¢ appears in a starting at position
a + strlen(a) — strlen(c)

Declare three char arrays.

char af101], b[101], c[101];

Read three input strings.

gets (a) ;
gets (b) ;
gets (c) ;

String b is a prefix of a if b appears in a starting at position 0.

if (strstr(a, b) == a)
puts ("true");

else
puts ("false");

String c is a suffix of a if ¢ appears in a starting at position a + strlen(a) — strlen(c).

if (strstr(a + strlen(a) - strlen(c), c) == a + strlen(a) - strlen(c))
puts ("true") ;

else
puts ("false");

E-OLYMP 87. Robot The infinite in both directions stripe with width 1 is divided
into blocks of size 1 * 1. In one of these blocks the robot is located. It can move from
one cell to another (the robot at the figure is marked with square). Its movements are
determined by the program, each instruction is given by one of three capital letters: L,
R, S. The instruction L says the robot to move one cell to the left, the instruction R — to
move one square right, and S — to stay in the same cell. Program execution means the
sequential execution of all instruction in it.

Write a program that will determine how many different cells visits the robot.

» Let the robot initially be in the cell with number 0. Simulate its movements,
memoizing the numbers of the leftmost I and rightmost r cells where it could get. Then
the number of different cells that the robot will visit while executing its program will be
r—1+1.

https://www.e-olymp.com/en/problems/87

E-OLYMP 504. Parking You want to park the car guests who have come to the
party, on the street. According to the rules the cars cannot park:
1. In front of the private departure;
2. At the bus stop and less than 10 meters before it;
3. At the pedestrian crossing, and less than 5 meters before him or after him.

You made plans for the surrounding streets, smashing them into sections the length
of 5 meters (this is the minimum length for parking). Land with departure on the plane
Is denoted by 'D', bus stops — 'B', transitions — 'S', others — '-'. Write a program that for
each street will determine the number of parking spaces.

» Iterate over all possible sections of the street of 5 meters long and check is it
possible to park a car there. Let the street plan be stored in a character array s. Then it is
possible to park on the section s[i] if the following conditions are simultaneously
satisfied:

e s[i] = °-, the section is free;

o s[i—1]1#‘S’us[i+1]#°S’, there is no pedestrian crossing nearby;

o s[i+1]+# ‘B’ us[i +2] # ‘B’, there is no bus stop up to 10 meters ahead.
Note that, according to condition of the problem, you can park right behind
the bus stop;

For the first example, consider all possible parking positions. They are marked in

green.

<—h> - -
us crossing crossing

Store the street plan in string s.

char s[100];

For each test case read the street plan into a character array s, starting from the first
position (to simplify the processing).

scanf ("%d\n", &n) ;
while (n--)
{
gets(st+l); res = 0;
for(i = 1; i <= strlen(s+1l); i++)

For each section s[i] check is it possible to park on it.

it ((
(

[1] == && (s[i+1l] '= 'S') && (s[i-1] '= 'S'") &&
[1+1)

l_l)
= 'R' && (s[1+2] !'= 'B')) res++;

S
S
Print the number of possible parking spaces on the current street.

printf ("%d\n", res);

}

https://www.e-olymp.com/en/problems/504

Compare strings

int strcmp (const char * strl, const char * str2);
Function starts comparing the first character of each string. If they are equal to
each other, it continues with the following pairs until the characters differ or until a
terminating null-character is reached.

Returns an integral value indicating the relationship between the strings:

return value indicates

<0 the first character that does not match has a lower value in strl than in str2

0 the contents of both strings are equal

>0 the first character that does not match has a greater value in stri than in str2

#include <stdio.h>
#include <string.h>

char s1[100] = "Apple";
char s2[100] = "Apple";
int main ()
{

int res = strcmp(sl,s2);

printf ("%d", res);
return 0;

int strncmp (const char * strl, const char * str2, size t num);
Compares up to num characters of the C string strl to those of the C string str2.
This function starts comparing the first character of each string. If they are equal to each
other, it continues with the following pairs until the characters differ, until a terminating
null-character is reached, or until num characters match in both strings, whichever
happens first.

#include <stdio.h>
#include <string.h>

char s1[100] = "abcdefg";
char s2[100] = "abcxyz";
int main ()
{
int res = strncmp(sl, s2, 3);

printf ("%d", res);
return 07

Concatenate strings

char * strcat (char * destination, const char * source);

Appends a copy of the source string to the destination string. The terminating null
character in destination is overwritten by the first character of source, and a null-
character is included at the end of the new string formed by the concatenation of both
in destination. Destination and source shall not overlap. Destination is returned.

#include <stdio.h>
#include <string.h>

char s1[100] = "Orange";
char s2[100] = "Apple";

int main ()

{
strcat (sl,s2);
printf ("%s", sl);
return O0;

